3.1.17 \(\int \csc ^8(c+d x) (a+a \sec (c+d x)) \, dx\) [17]

3.1.17.1 Optimal result
3.1.17.2 Mathematica [C] (verified)
3.1.17.3 Rubi [A] (verified)
3.1.17.4 Maple [A] (verified)
3.1.17.5 Fricas [B] (verification not implemented)
3.1.17.6 Sympy [F(-1)]
3.1.17.7 Maxima [A] (verification not implemented)
3.1.17.8 Giac [A] (verification not implemented)
3.1.17.9 Mupad [B] (verification not implemented)

3.1.17.1 Optimal result

Integrand size = 19, antiderivative size = 131 \[ \int \csc ^8(c+d x) (a+a \sec (c+d x)) \, dx=\frac {a \text {arctanh}(\sin (c+d x))}{d}-\frac {a \cot (c+d x)}{d}-\frac {a \cot ^3(c+d x)}{d}-\frac {3 a \cot ^5(c+d x)}{5 d}-\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \csc (c+d x)}{d}-\frac {a \csc ^3(c+d x)}{3 d}-\frac {a \csc ^5(c+d x)}{5 d}-\frac {a \csc ^7(c+d x)}{7 d} \]

output
a*arctanh(sin(d*x+c))/d-a*cot(d*x+c)/d-a*cot(d*x+c)^3/d-3/5*a*cot(d*x+c)^5 
/d-1/7*a*cot(d*x+c)^7/d-a*csc(d*x+c)/d-1/3*a*csc(d*x+c)^3/d-1/5*a*csc(d*x+ 
c)^5/d-1/7*a*csc(d*x+c)^7/d
 
3.1.17.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.25 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.86 \[ \int \csc ^8(c+d x) (a+a \sec (c+d x)) \, dx=-\frac {16 a \cot (c+d x)}{35 d}-\frac {8 a \cot (c+d x) \csc ^2(c+d x)}{35 d}-\frac {6 a \cot (c+d x) \csc ^4(c+d x)}{35 d}-\frac {a \cot (c+d x) \csc ^6(c+d x)}{7 d}-\frac {a \csc ^7(c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {7}{2},1,-\frac {5}{2},\sin ^2(c+d x)\right )}{7 d} \]

input
Integrate[Csc[c + d*x]^8*(a + a*Sec[c + d*x]),x]
 
output
(-16*a*Cot[c + d*x])/(35*d) - (8*a*Cot[c + d*x]*Csc[c + d*x]^2)/(35*d) - ( 
6*a*Cot[c + d*x]*Csc[c + d*x]^4)/(35*d) - (a*Cot[c + d*x]*Csc[c + d*x]^6)/ 
(7*d) - (a*Csc[c + d*x]^7*Hypergeometric2F1[-7/2, 1, -5/2, Sin[c + d*x]^2] 
)/(7*d)
 
3.1.17.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.79, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.789, Rules used = {3042, 4360, 25, 25, 3042, 25, 3317, 25, 3042, 3101, 25, 254, 2009, 4254, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^8(c+d x) (a \sec (c+d x)+a) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a-a \csc \left (c+d x-\frac {\pi }{2}\right )}{\cos \left (c+d x-\frac {\pi }{2}\right )^8}dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int -\left (\csc ^8(c+d x) \sec (c+d x) (a (-\cos (c+d x))-a)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\left ((\cos (c+d x) a+a) \csc ^8(c+d x) \sec (c+d x)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \csc ^8(c+d x) \sec (c+d x) (a \cos (c+d x)+a)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {a-a \sin \left (c+d x-\frac {\pi }{2}\right )}{\sin \left (c+d x-\frac {\pi }{2}\right ) \cos \left (c+d x-\frac {\pi }{2}\right )^8}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {a-a \sin \left (\frac {1}{2} (2 c-\pi )+d x\right )}{\cos \left (\frac {1}{2} (2 c-\pi )+d x\right )^8 \sin \left (\frac {1}{2} (2 c-\pi )+d x\right )}dx\)

\(\Big \downarrow \) 3317

\(\displaystyle a \int \csc ^8(c+d x)dx-a \int -\csc ^8(c+d x) \sec (c+d x)dx\)

\(\Big \downarrow \) 25

\(\displaystyle a \int \csc ^8(c+d x)dx+a \int \csc ^8(c+d x) \sec (c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \csc (c+d x)^8dx+a \int \csc (c+d x)^8 \sec (c+d x)dx\)

\(\Big \downarrow \) 3101

\(\displaystyle a \int \csc (c+d x)^8dx-\frac {a \int -\frac {\csc ^8(c+d x)}{1-\csc ^2(c+d x)}d\csc (c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {a \int \frac {\csc ^8(c+d x)}{1-\csc ^2(c+d x)}d\csc (c+d x)}{d}+a \int \csc (c+d x)^8dx\)

\(\Big \downarrow \) 254

\(\displaystyle \frac {a \int \left (-\csc ^6(c+d x)-\csc ^4(c+d x)-\csc ^2(c+d x)+\frac {1}{1-\csc ^2(c+d x)}-1\right )d\csc (c+d x)}{d}+a \int \csc (c+d x)^8dx\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \csc (c+d x)^8dx-\frac {a \left (-\text {arctanh}(\csc (c+d x))+\frac {1}{7} \csc ^7(c+d x)+\frac {1}{5} \csc ^5(c+d x)+\frac {1}{3} \csc ^3(c+d x)+\csc (c+d x)\right )}{d}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {a \int \left (\cot ^6(c+d x)+3 \cot ^4(c+d x)+3 \cot ^2(c+d x)+1\right )d\cot (c+d x)}{d}-\frac {a \left (-\text {arctanh}(\csc (c+d x))+\frac {1}{7} \csc ^7(c+d x)+\frac {1}{5} \csc ^5(c+d x)+\frac {1}{3} \csc ^3(c+d x)+\csc (c+d x)\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a \left (-\text {arctanh}(\csc (c+d x))+\frac {1}{7} \csc ^7(c+d x)+\frac {1}{5} \csc ^5(c+d x)+\frac {1}{3} \csc ^3(c+d x)+\csc (c+d x)\right )}{d}-\frac {a \left (\frac {1}{7} \cot ^7(c+d x)+\frac {3}{5} \cot ^5(c+d x)+\cot ^3(c+d x)+\cot (c+d x)\right )}{d}\)

input
Int[Csc[c + d*x]^8*(a + a*Sec[c + d*x]),x]
 
output
-((a*(Cot[c + d*x] + Cot[c + d*x]^3 + (3*Cot[c + d*x]^5)/5 + Cot[c + d*x]^ 
7/7))/d) - (a*(-ArcTanh[Csc[c + d*x]] + Csc[c + d*x] + Csc[c + d*x]^3/3 + 
Csc[c + d*x]^5/5 + Csc[c + d*x]^7/7))/d
 

3.1.17.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 254
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[x^m, 
 a + b*x^2, x], x] /; FreeQ[{a, b}, x] && IGtQ[m, 3]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3101
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_S 
ymbol] :> Simp[-(f*a^n)^(-1)   Subst[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 
 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n 
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])
 

rule 3317
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[(g*Co 
s[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[(g*Cos[e + f*x])^ 
p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
3.1.17.4 Maple [A] (verified)

Time = 1.00 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.79

method result size
derivativedivides \(\frac {a \left (-\frac {1}{7 \sin \left (d x +c \right )^{7}}-\frac {1}{5 \sin \left (d x +c \right )^{5}}-\frac {1}{3 \sin \left (d x +c \right )^{3}}-\frac {1}{\sin \left (d x +c \right )}+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a \left (-\frac {16}{35}-\frac {\csc \left (d x +c \right )^{6}}{7}-\frac {6 \csc \left (d x +c \right )^{4}}{35}-\frac {8 \csc \left (d x +c \right )^{2}}{35}\right ) \cot \left (d x +c \right )}{d}\) \(103\)
default \(\frac {a \left (-\frac {1}{7 \sin \left (d x +c \right )^{7}}-\frac {1}{5 \sin \left (d x +c \right )^{5}}-\frac {1}{3 \sin \left (d x +c \right )^{3}}-\frac {1}{\sin \left (d x +c \right )}+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a \left (-\frac {16}{35}-\frac {\csc \left (d x +c \right )^{6}}{7}-\frac {6 \csc \left (d x +c \right )^{4}}{35}-\frac {8 \csc \left (d x +c \right )^{2}}{35}\right ) \cot \left (d x +c \right )}{d}\) \(103\)
parallelrisch \(-\frac {\left (\cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+\frac {56 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+\frac {7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+\frac {203 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+\frac {56 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+448 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+203 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+448 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-448 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )\right ) a}{448 d}\) \(121\)
norman \(\frac {-\frac {a}{448 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{40 d}-\frac {29 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{192 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{d}-\frac {29 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{64 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{24 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{320 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(158\)
risch \(-\frac {2 i a \left (105 \,{\mathrm e}^{11 i \left (d x +c \right )}-210 \,{\mathrm e}^{10 i \left (d x +c \right )}-455 \,{\mathrm e}^{9 i \left (d x +c \right )}+1120 \,{\mathrm e}^{8 i \left (d x +c \right )}+686 \,{\mathrm e}^{7 i \left (d x +c \right )}-2492 \,{\mathrm e}^{6 i \left (d x +c \right )}-274 \,{\mathrm e}^{5 i \left (d x +c \right )}+1360 \,{\mathrm e}^{4 i \left (d x +c \right )}+25 \,{\mathrm e}^{3 i \left (d x +c \right )}-402 \,{\mathrm e}^{2 i \left (d x +c \right )}+9 \,{\mathrm e}^{i \left (d x +c \right )}+48\right )}{105 d \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )^{7} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{5}}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}\) \(195\)

input
int(csc(d*x+c)^8*(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(a*(-1/7/sin(d*x+c)^7-1/5/sin(d*x+c)^5-1/3/sin(d*x+c)^3-1/sin(d*x+c)+l 
n(sec(d*x+c)+tan(d*x+c)))+a*(-16/35-1/7*csc(d*x+c)^6-6/35*csc(d*x+c)^4-8/3 
5*csc(d*x+c)^2)*cot(d*x+c))
 
3.1.17.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (121) = 242\).

Time = 0.27 (sec) , antiderivative size = 281, normalized size of antiderivative = 2.15 \[ \int \csc ^8(c+d x) (a+a \sec (c+d x)) \, dx=-\frac {96 \, a \cos \left (d x + c\right )^{6} + 114 \, a \cos \left (d x + c\right )^{5} - 450 \, a \cos \left (d x + c\right )^{4} - 250 \, a \cos \left (d x + c\right )^{3} + 670 \, a \cos \left (d x + c\right )^{2} - 105 \, {\left (a \cos \left (d x + c\right )^{5} - a \cos \left (d x + c\right )^{4} - 2 \, a \cos \left (d x + c\right )^{3} + 2 \, a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) - a\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) \sin \left (d x + c\right ) + 105 \, {\left (a \cos \left (d x + c\right )^{5} - a \cos \left (d x + c\right )^{4} - 2 \, a \cos \left (d x + c\right )^{3} + 2 \, a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) - a\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) \sin \left (d x + c\right ) + 142 \, a \cos \left (d x + c\right ) - 352 \, a}{210 \, {\left (d \cos \left (d x + c\right )^{5} - d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{3} + 2 \, d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right ) - d\right )} \sin \left (d x + c\right )} \]

input
integrate(csc(d*x+c)^8*(a+a*sec(d*x+c)),x, algorithm="fricas")
 
output
-1/210*(96*a*cos(d*x + c)^6 + 114*a*cos(d*x + c)^5 - 450*a*cos(d*x + c)^4 
- 250*a*cos(d*x + c)^3 + 670*a*cos(d*x + c)^2 - 105*(a*cos(d*x + c)^5 - a* 
cos(d*x + c)^4 - 2*a*cos(d*x + c)^3 + 2*a*cos(d*x + c)^2 + a*cos(d*x + c) 
- a)*log(sin(d*x + c) + 1)*sin(d*x + c) + 105*(a*cos(d*x + c)^5 - a*cos(d* 
x + c)^4 - 2*a*cos(d*x + c)^3 + 2*a*cos(d*x + c)^2 + a*cos(d*x + c) - a)*l 
og(-sin(d*x + c) + 1)*sin(d*x + c) + 142*a*cos(d*x + c) - 352*a)/((d*cos(d 
*x + c)^5 - d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^3 + 2*d*cos(d*x + c)^2 + d 
*cos(d*x + c) - d)*sin(d*x + c))
 
3.1.17.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^8(c+d x) (a+a \sec (c+d x)) \, dx=\text {Timed out} \]

input
integrate(csc(d*x+c)**8*(a+a*sec(d*x+c)),x)
 
output
Timed out
 
3.1.17.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.89 \[ \int \csc ^8(c+d x) (a+a \sec (c+d x)) \, dx=-\frac {a {\left (\frac {2 \, {\left (105 \, \sin \left (d x + c\right )^{6} + 35 \, \sin \left (d x + c\right )^{4} + 21 \, \sin \left (d x + c\right )^{2} + 15\right )}}{\sin \left (d x + c\right )^{7}} - 105 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 105 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + \frac {6 \, {\left (35 \, \tan \left (d x + c\right )^{6} + 35 \, \tan \left (d x + c\right )^{4} + 21 \, \tan \left (d x + c\right )^{2} + 5\right )} a}{\tan \left (d x + c\right )^{7}}}{210 \, d} \]

input
integrate(csc(d*x+c)^8*(a+a*sec(d*x+c)),x, algorithm="maxima")
 
output
-1/210*(a*(2*(105*sin(d*x + c)^6 + 35*sin(d*x + c)^4 + 21*sin(d*x + c)^2 + 
 15)/sin(d*x + c)^7 - 105*log(sin(d*x + c) + 1) + 105*log(sin(d*x + c) - 1 
)) + 6*(35*tan(d*x + c)^6 + 35*tan(d*x + c)^4 + 21*tan(d*x + c)^2 + 5)*a/t 
an(d*x + c)^7)/d
 
3.1.17.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.04 \[ \int \csc ^8(c+d x) (a+a \sec (c+d x)) \, dx=-\frac {21 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 280 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 6720 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) + 6720 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + 3045 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {6720 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 1015 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 168 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, a}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7}}}{6720 \, d} \]

input
integrate(csc(d*x+c)^8*(a+a*sec(d*x+c)),x, algorithm="giac")
 
output
-1/6720*(21*a*tan(1/2*d*x + 1/2*c)^5 + 280*a*tan(1/2*d*x + 1/2*c)^3 - 6720 
*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) + 6720*a*log(abs(tan(1/2*d*x + 1/2*c 
) - 1)) + 3045*a*tan(1/2*d*x + 1/2*c) + (6720*a*tan(1/2*d*x + 1/2*c)^6 + 1 
015*a*tan(1/2*d*x + 1/2*c)^4 + 168*a*tan(1/2*d*x + 1/2*c)^2 + 15*a)/tan(1/ 
2*d*x + 1/2*c)^7)/d
 
3.1.17.9 Mupad [B] (verification not implemented)

Time = 14.44 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.98 \[ \int \csc ^8(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2\,a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {29\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{64\,d}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,d}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{320\,d}-\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (64\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\frac {29\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{3}+\frac {8\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{5}+\frac {a}{7}\right )}{64\,d} \]

input
int((a + a/cos(c + d*x))/sin(c + d*x)^8,x)
 
output
(2*a*atanh(tan(c/2 + (d*x)/2)))/d - (29*a*tan(c/2 + (d*x)/2))/(64*d) - (a* 
tan(c/2 + (d*x)/2)^3)/(24*d) - (a*tan(c/2 + (d*x)/2)^5)/(320*d) - (cot(c/2 
 + (d*x)/2)^7*(a/7 + (8*a*tan(c/2 + (d*x)/2)^2)/5 + (29*a*tan(c/2 + (d*x)/ 
2)^4)/3 + 64*a*tan(c/2 + (d*x)/2)^6))/(64*d)